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ABSTRACT

The problems in magnetohydrodynamics, in which an inviscid compressible
fluid with small conductivity flows steadily past a slender body of an arbitrary
cross section, in the presence of an applied magnetic field parallel to the uni-
form flow are considered. By the use of the slender body approximation we shall
discuss the character of the velocity and the magnetic fields, and obtain the drag
and the lateral force exerted on the body. For examples, the flows past a body of

an elliptic cross section and a body of revolution at a small incidence will be
discussed. It is noticeable that the induced drag for a slender body of revolu-
tion with pointed nose and tail ends is negative, and the lift for the se body
takes the negative sign for a positive incidence.

iii



TABLE OF CONTENTS

Section Page

Introduction 1

I Fundamental Equations for Fluid Flow 2

II Linearization of Equations for Fluid 5

III Fundamental Equations for Inside Electro-
magnetic Field 6

IV General Solutions of Fundamental Equations 7
(A) Outer Solutions 7
(B) Inner Solutions 10

V Supplementary Equations 11

VI Boundary Conditions 12

VII Circulation 14

VIII Examples 16

IX Total Force 19
(A) Drag 20
(B) Lateral Force 21

Re ferences 23

iv



JIBT OF FIOt,

1 Cross section of slender body in z-plane:
Symetric Joukowski aerofoil 24

2 Meridian section of slender body at small
incidence 25

3 Cross section of slender body in s-plane:
Ellipse 26

4 InducetO electric field for body of elliptic
cross section 27

5 Induced electric field and surface charge
distribution for body of revolution at small
incidence 28

6 Perturbation velocity field in s-plane for
body of revolution at small incidence: 29



INTRODUCTION

Recently Sears and Resler (1) investigated the flow of a non-viscous in-

compressible fluid with. an electrical conductivity past a two-dimensional thin ob-
stacle by the linearized theory. In their paper, the conductivity of fluid is
supposed to be infinite or very high. The same problem for an arbitrary conduc-
tivity was studied by McCune (2). The correlation effect between the compressi-
bility and the conductivity was studied by Taniuchi (3), Kogan (4), McCune and
Resler (5), and Sears (6). In these papers, the conductivity of fluid is supposed
to be infinite. The flows of the non-viscous compressible fluid with a small con-
ductivity past a two-dimensional thin body, and a body of revolution at zero inci-
dence were studied by Sakurai (7), (8), and Kusukawa (9), respectively. Sakurai

and Kusukawa take the magnetohydrodynamic Stokes' and Oseen's approximations, re-
spectively. Resler and HcCune (10) studied the flow of a compressible fluid with
an arbitrary conductivity past a sinusoidal wall. Ando (11), (12), discussed the
character of the linearized equation for the flow of a compressible fluid with an

arbitrary conductivity past a thin body, in the presence of the uniform applied
magnetic field in an arbitrary direction.

In the present paper we shall study the flow of a non-viscous compressible
fluid with a low conductivity past a slender body of an arbitrary cross section,
in the presence of a uniform applied magnetic field parallel to the uniform flow.

We shall linearize the fundamental equation, and #pply the slender body theory
(13) to the present magnetohydrodynamic flow. The induced electric field is quasi-
two-dimensional in the sectional plane. Both the velocity and the magnetic fields
can be decomposed into the axial field and the irrotational two-dimensional field

in the sectional plane. We shall discuss the circulation of fluid. The total
force exerted on the body will be calculated. For an example, the drag and the
lift for a body of revolution with pointed nose and tail ends at a small incidence
will be studied. It is worthwhile to notice here that the induced drag is nega-
tive, and the lift is negative for a positive incidence.



I FUNDAMENTAL EQUATIONS FOR FLUID FLOW

We shall consider the flow of a non-viscous compressible fluid with a low
electrical conductivity 6" past a body of an arbitrary cross section, in the
presence of an applied uniform magnetic field H: parallel to the uniform flow

UU* . We shall take the cms electromagnetic system of units and the cartesian
coordinates x*, y*, s*, where s* is parallel to the uniform flow. For simplicity,
we shall normalize the physical quantities with respect to the length L. of the
body, the uniform velocity U! , the uniform magnetic field 1.' , and the density

AL and the temperature-rT in the uniform flow such that

3C*S* 1A *t tr* n&k

T.-* -.* U: u.
L.e.

H ." J,." e , . e. . " : U .

He * * 46 T*H. !H" {'* ,"{= - .-;

H"is. Hi:

~~T- TA

where u, v, w, denote the components of the perturbation velocity, 1 ,
the perturbation magnetic field,e ,ey ,es the induced electric field, J -j,
is , the induced electric current density, p the pressure, (0 the density, T the

temperature, and the notations with and without asterisk represent the physical
and the dimensionless quantities, respectively. For convenience we shall intro-
duce the dimensionless parameters defined bys*A *: R. U: L

4-?.:U:"
F. u:,

where S and em are the pressure number and the magnetic Reynolds number, respec-
tively.

Supposing that the magnetic permeabilities of both the body and the fluid
are unity, and the fluid is non-viscous and thermally non-conducting, we can write
the equation of motion, the equation of continuity, the Ohm's law, the Maxwell's
equation, and the conservation of energy in the following form:

2



'(la

ax' al S 2

= V ,kr U+iiW)-I4+t = t - (la)

i + + -ir 1  ± = (1c)

3- alc 6S as~ad

_- ) (e) - (asf)-(4a) C(4b)
ay S-Sy T S

where C-, denotes the specific heat of t1he fluid. 4 * .
When the conductivity 0" of the fluid is low, the coupling between the

velocity and the magnetic field is small. Actually the uniform applied magnetic
field is scarcely distorted for a very small conductivity. As the conductivity
increases, the coupling becomes strong. It is well known that the magnetic
field is frozen into the material in the extreme case of infinite conductivity.
From these considerations, we can suppose that components of perturbation magnetic
field Jg , , , , are the order of magnitude of the thickness ratio , of
the body, at most, for a not so large conductivity,such that

for ~ a~

On the other hand, we can estimate the order of magnitude of the components

3) ? )



of the perturbation velocities and the density near the surface of the body based

on the knowledge of the conventional flow past a slender body without a magnetic
field (13) such that

0 (u.)=0() o(-) - 0 (,) ()0(6b)

(6b)0( 71 T.( '.}, 4e.

Remembering these order estimations, and retaining the leading terms, from Equa-
tions (3a), (3b) and (3c) we obtain

.= R,,, (-- k1 + e.) (7a)

R,, (&A --ut. LE e.) (7c)

Since every term in each equation may be considered to be the same order of magni-
tude, we have

o0 ,, C> o() o(ey)= o(-r. o(es =o(z)

0'Q .'.)= 0 ( R , F? , 0 ( .l ) = O (R P.'r .) ( .i ) = O ( R , , 9z (6 c )

We shall take a line element e along a stream line defined by

U dx V- dt +-L- dS

where denotes the magnitude of the nondimensional velocity. Integrating Equa-
tions (la)-(lc) with respect to 4 along a stream line, and remembering the order
of estimations (6a)-(6c) we shall obtain

(8a

+ ) a-3)+0 4

where C-p denotes the pressure coefficient defined by

e.f = -r = I (P, .

Since the body is very thin, and stream lines are almost parallel to the uni-
form flow velocity, we can approximately replace the variableX by S. This is the

quadratic formula for the pressure coefficient. If we put 0.0 in Equation (8a)
we have the pressure formula for the conventional case (14). By the use of Equa-
tion (8a) we can calculate the pressure distribution, if we find the velocity and

the magnetic field over the body.
Especially in the axially synetric case, the induced electric field can be

shown to be zero because of the geometrical symmetry.(9) Thus Equation (8a) is

reduced to

U =-Zr-)- W f(In '#h'L)js (8b)
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The last term of the right hand side of this equation represents the energy loss
due to Joule heat. The pressure drop is connected with the irreversible process.

II LINEARIZATION OF EQUATIONS FOR FLUID

We shall linearize the fundamental equations for the fluid flow obtained in
the last section. If we neglect the terms involving the square of perturbation
quantities, the equations of motion and the equation of continuity are reduced to

a f= al 'It(9a)

a3Lfo (9c)

(10)

Combining Equation (4a) with Equation (7a), we obtain

ay as

Similarly, from Equations (4b) and (7b), we obtain

Considering the order estimations (6c), we shall find that the axial components of
the electric fieldes and the electric current density s can be safely neglected
in comparison with the x- and the y components within the accuracy of the linear-
ized theory. Thus (4c) and (4h) can be respectively, approximated by

- 4 - (nc) ;-- ey = C (ld)

Equations (4f) and (4g) imply that b/6 and'a s vanish in the present approxi-
mation. Thus the induced electric field forms a quasi-two-dimensional field. Re-
membering Equations (6c), we shall find that the last parenthesis of the right
hand side of Equation (5) is the order of o(QC,' ). Neglecting the higher order
terms, we have c4%T 'T _f' )P

Combining this equation with the equation of state of an ideal gas, we have

_rF *. = const

where)" denotes the ratio of the specific heatsCp/C, . The fluid conforms the
law of the adiabatic change within the accuracy of the linearized theory.

Introducing the Mach number of the uniform flow
Ho = U.l/:

where 4: is the free stream speed of sound, we have

AT). (12)
From Equation (lc) we shall introduce the quasi-two-dimensional magnetic

potential such as

5



4x D* by DIP(13a)

Eliminating 1s from Equations (11a) and (lb), and considering Equations (llc) and
(lld), we obtain D

From this equation, we can introduce the quasi-two-dimensional velocity potential
defined by 7

3L C) I(13b)

From Equation (lid), we shall introduce the electric force function J1 such as

e - a e d7 - (13c)

Combining these equations described with each other, we shall obtain the fundamen-
tal equations governing (4 , I4j and . such that

CB ~ ( ~ ~ 9 5 L (14)

(15)

with A W' and-
aa l. 

, __

If the uniform flow is subsonic, B2 takes the negative sign. Besides, the
unknown functions 4 , ) and JL have to satisfy the following supplementary equa-
tions.

'53 5 (16a)

+ + - 2±(17b)

Considering Equations (13b) and (17a) we find that the velocity field is irrota-
tional in the sectional plane perpendicular to the s-axis, but it is rotational in
the meridian plane. The situation is the same for the magnetic field.

III FUNDAMENTAL EQUATIONS FOR INSIDE ELECTROMAGNETIC FIELD

In the interior of the body, the Ohm's law is simply represented by

6



lx -- 14 ex. (18a) 1Rjj (18b)

3 =  es (18c)

with = U: L*

whereT'& denotes the electric conductivity of the body, and the subscript "i" de-
notes the quantities in the interior of the body. The Maxwell's equations are rep-
resented by Equations (4a)-(4h). As described above (c.f. equation (6c)), the
axial component of the outside electric field e3 is negligibly small. If we con-
sider that the s-component of the electric field should be continuous on the sur-
face of the body, and the thickness of the body is the order of 0(Z,) , we can
conclude the s-component es. of the inside electric field to be the order of 00cr).
Remembering Equation (18c) we can safely neglecte,: and is: within the accuracy of
the linearized theory. Considering Equations (4c) and (4h), and neglecting the
higher order terms, we can introduce the inside magnetic potential %P, and the in-
side electric force function A defined by

- (19a)

exL A.; (19b)e t by Yy

Using the similar treatment as that for the outer field, we shall obtain the fol-
lowing fundamental and supplementary equations governing Y: andaz,

(20)

AS A =(21)

(22)
+ S- -

The axial component Ls; of the magnetic field can be given by

+ Ri- AL (23)

IV GENERAL SOLUTIONS OF FUNDAMENTAL EQUATIONS

(A) OUTER SOLUTIONS

First we shall consider the supersonic case. Since the fundamental equation
(14) is linear, the general solution should be represented by the sum of three in-
dependent solutions L , ITL and EfL such that

Y= Ta(-Lq (24)

The solution V satisfies the Laplace's equation,

L ~o (25)

Introducing the Laplace transform Zf of the solution tfc , and the Fourier trans-
form %. of the solution L9L with respect to S , we shall obtain the equations

7



governing 7P and such that

'0 C>(26b)

with

M % C+( --R-

*' ALR. 
(27a))~(~~i,

(2Pb

4 -LjW I +ziw~~-~)e~-~ 5c+R (27b)

where and WA denote the parameters of the Laplace and the Fourier transforms,
respectively. The solution of Equation (26a) satisfying the condition that the
perturbation velocity should vanish at infinity, can be expressed such as

?too

where r, 0 ,S denote the cylindrical coordinates, Q ) and the arbitrary
functions of X , andX(qw- r) is the n-th order modified Bessel function of the
second kind. Near the body, where r is small, the Bessel functions can be expanded
into the following series,

(05 ... +.14 V-)4V a -L ~ ~ o fr)+' *V

with C -- 0.5772
Remembering (27a), we shall find thatm?< takes a moderate value for a moderate
value of& , when the parameters 53 , Q and R., are the order of unity, 0(a)
In such a case we may take the first three terms as an approximation of the Bessel
functions for a small value of r .Moreover, the second and the third terms in

8



the series expansion of K. are much smaller than the first term. Since the second

and the third terms are not essential, they may be safely replaced by

From similar considerations, R, and )4 can be approximately represented by

For convenience, we shall introduce the complex variable in the sectional plane
such as is

Using the approximate expressions of J , and applying the inverse Laplace
transformation to T. we obtain the solution in the following form,

'- a* 4 4 .,g4 1,, +C)- 1

with

V4~1~~, ~'I (29a)-P3 Re z

=r- 11-3 (W-4)(1--2)

where 44() and (.(s) denote arbitrary pure real and complex functions of S ,Ize
denotes the real part of complex function, and.o means the linear operator corres-

ponding to the expression (27a). Similarly, by the use of the Fourier transforma-
tion, we can obtain the solution (Pi in the following form

= &. + (#,&. (Pj) (29b)

The functionsj.,tE. ,'.Qb , andib. are obtained by replacing( , q , and Ws. in
Equation (29a) by P ,i'. and b, , where,& means the linear operator correspond-
ing to the expression (27b), and 6. and k. denote the arbitrary pure real and the
complex functions of s different from4.14 and Qlbts). The general solution,# of
Equation (25) satisfying the condition at infinity should be given by

z- (30)

wherer'() andfNdenote the arbitrary pure real and the complex functions of s,
respectively. Substituting Equations (29a), (29b) and (30) into Equation (24), we
shall obtain the solution such that

4= + 4,P+ If 4

9



with

,. 41 j 4 q3 Q143 (31a)

Considering Equation (29a), we can find the following relations,

. P(31b)

and O&.e,) = (I oC.)0'Po)

(31c)
o004) = o(r;,) oM(P)

Since the fundamental equation governing %V is the same as that governing tR

we can obtain the solution ' in the similar form,
q'~ ~ ~ ~~~%2 =q, ,+ ,+ q.= %,+ 'j,,

'M. tPc. .1 (32)

The functions + , +c. , 4'c. , , ,, , *, ,4 J , , and 14D3 can be ob-
tained by replacing the arbitrary functons P, , 0.., , 1. , and lb,. in
the solution kR with the different arbitrary functions ra . , C, d, , and
. , respectively. We have the similar relations to (31b) and (31c).

The solution of Equation (15) satisfying the condition at infinity can be
readily written in the following form,

Next, in the subsonic case, both the independent solutions 4 and I& are
obtained by the Fourier transformation. The results are given in the same expres-
sion as those of the supersonic case by replacing the linear operators -e and
with'i and .

(B) INNER SOLUTIONS

The solution of Equation (20) without any singularity along the axis (Ir--c)
except the logarithmic singularity is given by

The solution 1.-is the harmonic function such as

The Fourier transform'$fof the function~f with respect to S should satisfy the
equation (

(36)

The general solution of Equation (36) without any singularity along the axis is ob-
tained in the following form

10



ftz 0

where -dw) andjW) are the arbitrary functions of w , and-.(iwr)denotes the n-th
order Bessel function of the first kind. Since the thickness of the body is very
small, the Bessel functions can be approximated by the first two-terms of their ex-
pansions into the F' -power series, such that

Using this approximation, and applying the inverse Fourier transformation toD
we shall obtain the solution %ju such that

with

40i I - s) (38a)

Considering the solution (38a), we shall find the following relations,

S1I R(38b)

and

0 0 - M.) 0 ((38c)

The solutonQof Equation (21) can be easily found such that

As we shall discuss later, the logarithmic singularity of the inside solu-
tions is caused by the current flowing in an infinitesimally thin filament of in-
finite conductivity inserted along the axis of the body.

V SUPPLEMENTARY EQUATIONS

The general solutions obtained above contain several arbitrary functions of
S . They should be determined by satisfying the boundary conditions and the sup-

plementary equations (16a)-(16d) and (22).
Remembering Equations (31a)-(31c), and neglecting the higher order terms
we can write Equation (16a) such that

16. - W .LeG12 (40)

Substituting the expressions (29a) into Equation (40) and comparing the co-
efficients of the terms involving the same function of j , we shall obtain

___ Ajr. _t_ + j P, 4 J I = (41a)

11



and

(41c)+ CAL(1 ) .t,)4.(s)- 1.--() - ) - (s)+1k, (S) 0

Integrating Equation (41a), and considering the condition that all the perturba-
tions should vanish at infinity upstream, we have

d + ,- +% (7 - (41a')

Similarly, from Equation (16b) we obtain

P R, + , M r r3) (41d)
.?C.l ,{ + cc- "(s).a CO,.[.,) -C.'6) __)1 (41e)

and -- [CJ*4 [ + d.c ( + (s)1h,.(s) +R,. ak:, (5) + I,(s)
ii~ I (41f)

(Sd --. . [ct( "(V "S ((i

By the use of the same procedure, Equations (16c) and (16d) are respectively, re-
duced to

with .a . )b.Z. C.sCo and e11o=_ .

The supplementary condition (22) for the inside field supplies

R, (411)
jrI.,I+ R (41j)

VI BOUNDARY CONDITIONS

We shall take a plane perpendicular to the ,.-axis. The cross section of the
body in the plane forms a closed curve, C, say. The outward directing normal vec-
tor and the counterclockwise tangential vector of the curve C are denoted by V7
andir , respectively. Within the accuracy of the linearized theory, the boundary
conditions can be given in the following form

(i) Since the fluid must flow past the body, we have , an

.- (42a)
If the body is given, the right hand side of this equation is a known function.
Integrating Equation (42a) along the curve C with respect to'r, we obtain

CL. (T) 4 b. (5) = _ Z i(,S) (42b)

where Z{s)denotes the area of tt.e cross section of the body.

(ii) Since the magnetic field should be continuous on the surface of the

12



surface of the body, we have

+ (43a)

(43b)

5 - , -,(43c)
ass

Integrating Equations (43a) and (43b) along the curve C with respect to '1 , we

obtain, respectively
r + (43d)

and c.L - - G(s) (43e)
2w1-

with (;()V I1(M)2Z

When ol/xr is much smaller than unity,G(s) can be approximated by the sectional
areaZ (s) of the body.

(iii) Since the tangential component of the electric field should be contin-
uous on the surface of the body, we have

Q - = ;-I (44)
ETh ;iT

The total charge surface density T, induced on the surface of the body
should be given by at' -)J i

- (45a)

with , -

Integrating Equation (45a) along the curve C with respect toZ , we shall obtain
f yT = 27r (r3 - r) (45b)

The left-hand side of this equation denotes the amount of the surface charge per
unit width in the s-direction.

The total amountj of the surface charge can be evaluated by

= ..* ~i2,rf{Pjs).. 5 (S)~ds(45c)
with 4 "

(iv) We shall consider the condition at the axis (V=o).
(a) In the usual case we have no singularity within the body. All the vari-

ables should be continuous and finite in the interior of the body.
(b) We shall consider such a geometrical configuration that an infinitesi-

mally thin filament with infinite conductivity is inserted along the s-axis. The

electric current flows in the filament without any electric field along the fila-
ment. Moreover some electric charge can be induced along the filament, and the
source singularity of the electric field at W=o can be permitted. As a result,

we may have a circular magnetic field and a circulation of the fluid.
Considering the continuity of current, we have

1: L * (46)

13



where JT* denotes the electric current flowing in the filament. The length density

P1 of the electric charge induced along the filament can be obtained by

g 0 -yUQ- (47)

Remembering the fact that rand ry denote the source strengths of the inner and
the outer radial electric fields, respectively, we can realize the physical mean-
ing of Equations (45b) and (47). For example, we shall consider the case, where
both re and r1  are positive. In the interior of the body lines of electric force
corresponding to the strength r starts from the filament and terminates at the
surface of the body. In the outside of the body lines of electric force corres-
ponding to the strength C starts from the surface toward infinity.

VII CIRCULATION

We shall obtain the five relations among the functions 1, rZ , C'

and rIs represented by Equations (41a'), (41d), (41i), (43d) and (46).
(a) If there is no filament along the axis, we can put

J(S) =0 (48)

Combining Equation (48) with the five relations described above, we shall obtain

IIF, =G aG =F "6= (49)

Thus we have found that the circulation of the fluid vanishes together with the
singularity at the axis.

(b) We shall consider the case, where the filament is inserted along the

s-axis, and terminates at the both pointed ends of the body. In this case we can
put

J(3o=O for Sand0 a I

J(s)#o for 0< s$c (50)

where physically considering,,(t) should be a continuous function of S . Combining
Equation (50) with the five relations amoung r , , G , r , and Fs , we
obtain

S(1)SQ As (51b)

SI C
G .-4 r (Sc) r I , (51d)
J= 7 i*1, Q.= SR.. Q6= SR

By the use of Equations (45c) and (47) we can calculate the total amount of
the electric charge on the surface of the body, and the length density of the
charge along the filament, respectively, such as

$,2 -' ,-= -4 . (51a Of)

and

2 ZTr C (51g)

14



Thus, if the circulation re of the flow is determined, all other quantitiesTA ,3 ,
r4 , r , T , and ftcan be obtained. It is of interest to consider the

following extreme cases.

(i) If the conductivity 6 of the body vanishes, all P. except Pr should
vanish. The velocity field has no circulation as well as the magnetic field. No
current flows in the filament. Remembering Equation (39), we realize that P-
represents the radial electric field in the interior of the body. Then the inside

radial electric field may remain in this case. As a result f, and 1, may exist.

(ii) In the case, where the conductivity - of the fluid vanishes, we find
that all Ps except r3 vanish. The velocity and the magnetic fields have no cir-
culation. This case corresponds to the conventional case. The outside radial
electric field corresponding to r3 may remain.

(iii) In a hypersonic flow, in the presence of an applied magnetic field, we
use the magnetohydrodynamic Stokes approximation frequently. In this approximation
we suppose that R, andR# vanish, but Q and Q still remain finite, because Gbe-
comes infinite. The circulations Q and Er. of the outer and the inner magnetic
fields vanish, but the circulation F1 of the flow and the electric radial fields
ri and Frsmay remain. Corresponding to this fact, the current j vanishes, while
the induced charge distributions 1. and f, remain.

We shall return to the general case, wherel?.,. and Q. are the order of unity
at most. Remembering Equations (31b) and (42a), we realize that tf, should satisfy
the two-dimensional Laplace's equation and the Neuman's boundary condition. It is
well known that the solution LQ, can be determined except an arbitrary function
&-. . If the curve C is smooth, we have no mathematical reason to determine
the value of f(s. If the curve C has a sharp edge,Z4/,Tmay become infinite at
the edge. We can choose an appropriate value of T in order to prevent the infi-
nite velocity. These circumstances are similar to the conventional stationary flow
past a two-dimensional obstacle with a sharp trailing edge. If the fluid could
flow around the sharp corner in the initial stage of the magnetohydramic flow, the
tangential velocity would take a very large value. Then the normal component of
the induced current might become tremendously large, unless the body is an insul-
ator. According to the interaction between the induced current and the applied
uniform magnetic field, a large Lorentz force exerts on the fluid. Since the
fluid is detained by the Lorentz force, it cannot flow around the sharp edge. Thus
there occurs an appropriate circulation around the curve C which will make the po-
sition at the edge coincide with a stagnation point.

By the use of the Fourier theorem, we can obtain the following result. The
outside region of the curve 0 in the z-plane can be conformally mapped into the
outside region of the unit circle C in the I -plane by an appropriate analytic
function (a) . The function jb/ds in Equation (42a) is expressed as the func-
tion of 9 and S such that

ds - (52a)

If the functions f(a) and E(Q.)are found, the circulation r, of the flow can be ob-
tained such that

15



I r . (52b)

with J

and ra

For an example, we shall take a slender body, the sectional form of which is
a thin symmetrical Joukowski aerofoil shown in Fig. 1. The chord length and the
thickness of the Joukowski profile are represented by the functions c(s) and d(s)
of 5 , respectively. We shall suppose that d1*c(s) is a constant, and that the
symmetrical plane of the body has a small angle of attack,,"' , against the uni-
form flow (c.f. Fig. 2). Applying the general expression (52b) to this problem,
we obtain

. [4.(53)

Since both the edges of the body are supposed to be pointed,c(s) vanishes at S-O
and Sz |. Remembering Equation (51e), we find that the assumption (50) is self-
consistent in this example.

VIII EXAMPLES

Hereafter we shall restrict our discussion to the case of small value of R1
and k . Expanding the right hand side of Equation (27a) into the R.. and A power
series, and neglecting the order of square of Re. and Q , we have

Considering the character of the Laplace transform, we shall obtain the linear op-
erators d and it._ j • Q + in Equation (29a) such that,

(54a)

.<==( . .(j ~ o( (, -:))d.

(54b)
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Considering the character of the Fourier transform, we shall obtain the operators
p and + such that,

4 a + d.
- (54c)

+1i ~(I 1 ~s4 (54d)

In the subsonic case, both the operators ' and 5 are connected with the Fourier
transformation. We shall obtain

(55b)

--- 9(55c)

From the character of the Fourier transformation, .(S)should be finite for
-a # £ * -. Considering Equation (42b), this requirement implies that
should be continuous for-,e S f. v . Then?_(s) should vanish atSo and 5=1.
Therefore the body should have a pointed nose, and a pointed or cylindrical tail.

We shall consider two examples.

(i) Slender body of an elliptic cross section at zero incidence (c.f. Fig.3).
We shall suppose that no singularity is at the axis. The sectional form of the
body is given by

(K +- OIL EY

wherekls) and E(S) are the functions of S , and f/K is supposed to be a small con-
stant. Neglecting the terms of the order of 6( EI/K'), we can write the boundary
conditions in the following form.

17



From Equations (42a) and (42b) we have

4t($) +61(S) + (S) !!- (k ! ~ (56b)~zi

From Equation (43a), we have-z C.-+010 (Cc-t a,. ,

YO 
(56c)

From Equations (43b) and (43e) we have

C.-+ 4 =- f. ( S) (56d)

K (56e)

From Equation (43c) we have

( 56g)

From Equation (44) we have

+d0 -K -'----- ( 56f)

K
L. (5 6h)

In this case all the complex functions CUa(0) Ih, $),etc. are reduced to the

pure real functions 4.is) , 4,is) etc., respectively. Combining these eight differ-

ential equations (56a)-(56h) with the seven differential equations (41b), (41c),

(4Le), (41f), (41g), (41h) and (41j), we can determine the fifteen arbitrary func-

tions * , le , C. , d , , , , , ,t ', 3 ' , # M , and

18



Thus we obtain the solutions q , W, , , and S)Z. Remembering Equation
(31c) and neglecting the higher order terms, we have

where 4P. = 0  -) Z'(s) for the supersonic case

(57a)

2(1 05 ILL V(S) for the subsonic case

where W", 'Z ) 
' R, , ) + q + Z) ) C ,I

(57b)
for the supersonic case

4'.* "o'awj are replaced by Y and " for the subsonic case

L DL K ! 4I k ), a F

with

where Y
Co I= o f k f) o

, -_ ( . (57c)

l - 1 li"". ,: l (57d)

R ~.L '~ R___(57e)
4( Kk Ci S
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The velocity field in the sectional plane consists of the diverging or converging
radial flow and the quadrupole like flow. The perturbation magnetic field is pro-
portional to R.,. The outer electric field is represented by the field due to a
quadrupole at the origin. The lines of electric force for the inner field is sim-
ilar to the stream lines of the fluid flowing along the inside corner of right
angle. By the use of Equation (45a), the surface density 67 of induced charge is

represented by

4"=J -. ',- (58)

The surface charge dO, takes the maximum value for an insulated body (Rb-o). As
the conductivitydn* of the body increases, the current flowing through the body
increases. As a result the charge ti will decrease. Moreover this may cause the

decrease of the electric field given by Equations (57d) and (57e). Remembering
Equations (7a) and (7b), we can introduce the electric current function # defined

by

(59)

where

The outside current field is represented by superposing a quadrupole field on
a circular field. The electric field is shown in Fig. 4 schematically.

(ii) Body of revolution at a small incidence. We shall consider the flow
past a body of revolution at a small incidence,AU . As shown in Fig. 5, the x-axis

is taken to be vertical. By the use of the similar treatment to the former example,
we can solve the present case. Neglecting the order of square of,Ao4 , q and L4

are approximately represented by P (, and Y. + 9, , respectively. The functions
L. and Y. are obtained by replacing K(s) in Equations (57a) and (57b) by RI)

where R.(L) denotes the radius of the circular cross section. The functions
and are obtained in the following formn

7-W 2T 'A(60a)

with

The functions 4. , j ,ILKand the surface charge distribution are obtained

in the following form,
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(60c)

where 
'

ZUr

,,,

JL= -. At - (60d)

(60e)

A_ SI '. (61)

The velocity field in the sectional plane consists of the diverging or converging
radial field and the dipole like field. The outside electric field is that due to
a dipole at the origin, and the inside electric field is uniform. The coefficient

R, /Rm, +W has the same physical meaning as in the previous example. The electric
field and the surface charge distribution are schematically shown in Fig. 5.

IX TOTAL FORCE

The force exerted on a body in the uniform flow, and the applied magnetic
field consists of the hydrodynamic pressure and the electro-magnetic force. Since
there is no applied electrostatic field in the present problem, the total electro-
static force exerted on the body should vanish. As the Lorentz body force exerts
on the induced current in the interior of the body by the applied magnetic field,

it should vanish for an insulated body. According to the electromagnetics, the
Lorentz body force can be expressed by the surface integral of the Maxwell stress
tensor. By the use of the momentum theorem, the total forcel t can be expressed by
the integral over a control surface,s, say, such that

F +f, 2 (HV) H" )j J (62)

with IF

where V denotes the velocity vector, and A) denotes the outward directing unit

vector normal to the control surface.

(A) DRAG

The drag 0 is the s-component of the total force F After the similar
treatment to the conventional case (13), the s-component of Equation (62) can be
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reduced to

U 7_.)Z( g) O(',i

Din D
D = Z W .

- 1 L i ( + )0 )AZIi

(63)

withD

where C(S) denotes the cross sectional form, and m and Z denote the outward
directing normal and the counter-clockwise vectors of C, respectively. Since the
drag given by Equation (63) corresponds to the integral of the hydrodynamic pres-
sure over the surface, the Lorentz force does not make any contribution to the
total drag within the accuracy of the present approximation. The first term of
the right hand side of Equation (63) represents the conventional supersonic drag.
In the subsonic case, this term is dropped, and other terms do not change. For
example we shall calculate the drag for a slender body of revolution at a small
incidence. Substituting the solutions (60a), (60b) and (60d) into Equation (63),
we have

. .-FZ I I

- Z/' a .Rs )g. Ao >I (64a)
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The first term of the right hand side of Equation (64a) represents the conventional
supersonic drag, which is the order of O(Z,1) . The sign of the second term cor-
responds to the s-distribution of the cross sectional area, and the order of this
term is O(Q. 4) . The third term represents the mutual effect between the com-
pressibility and the conductivity. This term always takes the positive sign and
is the order of ( JZ.I,+ The last term represents the so-called induced drag,
which is the order of o(j't.) . The induced drag takes the negative sign in the
present case. Since the third term predominates among the last three terms of
Equation (64a), the total drag increases by the electromagnetic effect. Putting
," = ain Equation (64a), we shall obtain the drag for a body of revolution.
This expression coincides with the result due to Ando(1 2 ), except only one term.
The difference results from his treatment, where he omitted the last integral, in
the pressure formula (8a) before substituting it into Equation (62). In the con-
ventional case, the term due to the compressible effect vanishes unless the area
of the base section Z(s) does not vanish. In the present case, the terms due to
the electromagnetic effect still remains finite for a body with a pointed tail.

In the subsonic case, the drag is represented by

D~ OU-- z-1I IM I j_!. Il cs
•Is- 21 Is.-$t

4- 2fZ ) h IL~s (64b)

where = I- M, . c I

The conventional drag vanishes. The behavior of other terms are similar to those
of the supersonic case.

(B) LATERAL FORCE

By the use of Equation (62), the x-and the y-components of lateral force,
YO , are calculated such that

X~ (
+ o ( V; + S

with

where denotes the angle between the normal vector 1} of the curve C and the
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x-axis.

Applying Equation (65a) to the body of revolution at a small incidence,A,
we obtain

I'' z.'b (65b)

The equation (65b) implies that the lift takes the negative sign for a positive
value of the incidence, 4& . This negative lift corresponds to the negative in-
duced drag discussed above. For the sake of considering the phys-cal meaning of
the negative lift, we shall decompose the lift to the two integrals of the pres-
sure and the Ma-well stress tensor over the surface of the body. The integral of
the pressure is ven by

I Zer

- f C Coco 6 R(s)d a0ds Q- . Z w)s (66a)
0 a f0

The integral of Maxwell stress tensor is given byI'
-2Qff RZ (dQ s - (66b)

First we shall consider an insulated body. We shall suppose Z'(s)is positive for
a < S e 9, . and negative for S. 4 5 c I . For the region, where 2'($is positive,
the velocity field in the sectional plane consists of the dipole like and the di-
verging radial fields (c.f. Fig. 6). As a result, the induced current flows
clockwise around the circular section C. The Lorentz force due to the correlatbn
between the induced current and the uniform applied magnetic field acts in the
inward direction normal to the circle. Remembering the velocity field shown in
Fig. 6, it is realized that the velocity due to the dipole and the Lorentz force
take the similar directions with each other on the upside of the body, but they
take the opposite directions on the downside. We shall consider a couple of small
volume elements of fluid flowing along stream lines of the upside and the down-
side of the body. The work performed by the Lorentz force when the fluid passes
along the stream line of the upside from 0 to 5 (S 15,) , should be larger than
the work performed when the fluid passes along the stream line of the downside.
Thus the pressure on the upside is larger than that on the downside for the same
section, 5 . After the position 5, ,fs) is negative. The velocity field in
the sectional plane consists of the dipole like field and the converging radial
field. Then the induced current flows counterclockwise, and the Lorentz force
acts in the outward direction. As a result, the work performed on the upside is
smaller than the work performed on the downside. Thus the excess pressure on the
upside decreases as S increases (5,<.S ), and the pressures of the both sides
take the same value at the tail, 3=I . Since the upside pressure is larger than
the downside pressure, the integral of the pressure distribution takes the nega-
tive sign (c.f. Equation (66a)).

Next we shall consider a conducting body, Remembering Equation (60e), we have the
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inside current density such as

S19(67)

The Lorentz force due to the correlation between the uniform horizontal in-
duced current and the applied magnetic field acts downward in the vertical direction
(c.f. Equation (66b)). Thus, both the integrals of the pressure and the Maxwell
stress tensor contribute to the negative lift.

25



REFERENCES

i) Sears, W.R., and Resler, E.L., Theory of Thin Airfoils in Fluids of High
Electrical Conductivity, J. Fluid Mech., Vol. 5, Part 2, p. 257, Feb. 1959

(2) McCune, J.E., On the Motion of Thin Airfoils in Fluids of Finite Electrical
Conductivity, J. Fluid Mech., Vol. 7, Part 3, p. 449, March, 1960

(3) Taniuchi, T., An Example of Isentropic Steady Flow in Magnetohydrodynamics,
Progress of Theoretical Physics, Vol. 19, No. 6, 1958

(4) Kogan, M.N., Magnetohydrodynamics of Plane and Axisymmetric Flows of a Gas
with Infinite Electrical Conductivity, Prikl. Mat. i. Mekh., Vol. 23, No. 1,
p. 70, 1959

(5) McCune, J.E., and Resler, E.L., Jr., Compressibility Effects in Magnetoaero-
dynamic Flows Past Thin Bodies Journal of Aero/*Space Sciences, Vol. 27, No.7,
p. 493, July, 1960

(6) Sears, W.R., Sub-Alvenic Flow in Magnetoaerodynamics, Journal of Aero-Space
Sciences, Vol. 28, No. 3, p. 249, March, 1961

(7) Sakurai, T., Two-dimensional Flow of an Ideal Gas with Small Electric Con-
ductivity Past a Thin Profile, J. Phys., Soc. Japan, Vol. 15, No. 1, p. 326,
Feb. 1960

(8) Sakurai, T., Correction to the Paper 'Two-Dimensional Flow of an Ideal Gas
with Small Electric Conductivity Past a Thin Profile," J. Phys. Soc. Japan,
Vol. 15, No. 6, p. 1135, June, 1960

(9) Kusukawa, K., On the High-Speed Flow of a Compressible Conductive Fluid Past
a Slender Body, Journal of Aero-Space Sciences, Vol. 27, No. 7, p. 551,

July, 1960

(10) Resler, E.L., and McCune, J.E., Some Exact Solutions in Linearized Magneto-
aerodynamics for Arbitrary Magnetic Reynolds Numbers; Rev. MOdern Phys.,
Vol. 32, No. 4, p. 848, Oct., 1960

(11) Ando, S., General Theory of Electrically Conducting Perfect Gas Flow Past a
Three Dimensional Thin Body Journ. Phys. Soc. Japan, Vol. 15, No. 1, p. 157,
Jan. 1960

(12) Ando, S., Some Remarks on the Magnetohydrodynamic Linearized Theory, Journ.
Phys. Soc. Japan, Vol. 15, No. 8, p. 1523, August, 1960

(13) Ward, G.N., Supersonic Flow Past Slender Pointed Bodies, Quart. J. Mech. and
Appl. Math. Vol. 2, Part 1, p. 75, 1949

(14) Lighthill, M.J., Supersonic Flow Past Bodies of Revolution, ARC R & M,
No. 2003, 1945

26



D(SA (S

Figure 1 Cross section of slender body in z-plane: Symmetric
Joukowski aerofoil

A

.JOUKOWSKI CROSS SECTION

Figure 2 Mieridian section of slender body at small incidence
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Figure 3 Cross section of slender body in z-plane: Ellipse
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Figure 1 Induced electric field for body of elliptic cross section
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Figure 5 Induced electric field and surface charge
distribution for body of revolution at small
incidence
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